CE 525 Fall 2024 Study Guide for Exam II

1. Matrix Displacement Method (MDM) for beams (Lectures 10-14)

- a. Identification of degrees of freedom (dof) in a structure with proper notation also for members, joints, forces, and reactions.
- b. Structural Level Superposition to construct system of equations: $\{P\}=\{P_f\}+[S]\{d\}$.
- c. Member Level Superposition to construct system of equations: $\{Q\} = \{Q_f\} + [k]\{u\}$.
- d. Definitions of S_{ij}, and k_{ij}.
- e. Derivation of the elements of the 4x4 BEBT member stiffness matrix [k] *using mechanics of material approach*.
- f. Derivation of the elements of the 4x4 BEBT member stiffness matrix [k] using the *finite element formulation* based on virtual work.
- g. Derivation of fixed end forces/moments using principle of superposition.
- h. Determining fixed end forces/moments using finite element shape functions.
- i. MDM implementation of support displacements.
- j. Assembly of [S], $\{P_f\}$ from member [k], $\{Q_f\}$ using:
 - I. Code Number Method
- k. Solution of $\{P\}=\{P_f\}+[S]\{d\}$ to obtain $\{d\}$.
- 1. For each member, use compatibility to get $\{u\}$ in terms of the elements of $\{d\}$.
- m. Calculation of member end forces using $\{Q\} = \{Q_f\} + [k]\{u\}$.
- n. Use of member end forces to obtain reactions and verify equilibrium and compatibility.
- o. Draw shear force and bending moment diagrams. Calculate shear and bending stresses.

2. Matrix Displacement Method (MDM) for 2D Frames (Lectures 15-16)

- a. Identification of degrees of freedom (dof) in a structure with proper notation also for members, joints, forces, and reactions.
- b. Structural Level Superposition to construct system of equations: $\{P\}=\{P_f\}+[S]\{d\}$.
- c. Calculation of fixed-end forces/moments on inclined members.
- d. Member Level Superposition in local coordinates to construct: $\{Q\} = \{Q_f\} + [k]\{u\}$.
- e. Using the transformation matrix [T] to construct member system of equations in global coordinates: $\{F\}=\{F_f\}+[K]\{v\}$, where $\{F_f\}=[T]^T\{Q_f\}$ and $[K]=[T]^T[k][T]$.
- f. Assembly of [S], {P_f} from member [K], {F_f} using: *I. Code Number Method*
- g. Solution of $\{P\}=\{P_f\}+[S]\{d\}$ to obtain $\{d\}$.
- h. For each member, use compatibility to get $\{v\}$ in terms of the elements of $\{d\}$.
- i. Calculate global member end forces using: $\{F\}=\{F_f\}+[K]\{v\}$.
- j. Calculate local member end forces using: {Q}=[T]{F}
- k. Use member end forces to obtain reactions and verify overall equilibrium.
- 1. Draw axial force, shear force, and bending moment diagrams.
- m. Calculate shear and normal (axial + bending) stresses.

3. Matrix Displacement Method (MDM) for Grids (Lectures 17-18)

- a. Identification of degrees of freedom (dof) in a structure with proper notation also for members, joints, forces, and reactions.
- b. Structural Level Superposition to construct system of equations: $\{P\}=\{P_f\}+[S]\{d\}$.
- c. Calculation of fixed-end forces for torsional moments.
- d. Member Level Superposition in local coordinates to construct: $\{Q\} = \{Q_f\} + [k]\{u\}$.
- e. Using the transformation matrix [T] to construct member system of equations in global coordinates: $\{F\}=\{F_f\}+[K]\{v\}$, where $\{F_f\}=[T]^T\{Q_f\}$ and $[K]=[T]^T[k][T]$.
- f. Assembly of [S], {P_f} from member [K], {F_f} using: *I. Code Number Method*
- g. Solution of $\{P\}=\{P_f\}+[S]\{d\}$ to obtain $\{d\}$.
- h. For each member, use compatibility to get $\{v\}$ in terms of the elements of $\{d\}$.
- i. Calculate global member end forces using: $\{F\}=\{F_f\}+[K]\{v\}$.
- j. Calculate local member end forces using: $\{Q\}=[T]\{F\}$
- k. Use member end forces to obtain reactions and verify overall equilibrium.
- 1. Draw torsion, shear force, and bending moment diagrams.
- m. Calculate shear (torsion + shear force) and bending stresses.