Linear Algebra Fundamentals

If I gave you the three (linear) equations: $3x_1 + 2x_2 + 1x_3 = 10$

$$
2x_1 + 4x_2 + 3x_3 = 19
$$

$$
1x_1 + 3x_2 + 5x_3 = 22
$$

Could you solve these? How?

$$
\begin{bmatrix} 3 & 2 & 1 \ 2 & 4 & 3 \ 1 & 3 & 5 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = \begin{bmatrix} 10 \ 19 \ 22 \end{bmatrix}
$$

$$
[A][x] = [B] \qquad [A]\{x\} = \{B\}
$$

$$
\[A\]_{\text{max}} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & \dots \\ \dots & \dots & a_{ij} & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \quad \text{m x n = rows by columns}
$$

In the preceding case: $[A]$ is a 3 x 3 "square matrix" [x] is a 3×1 "column matrix/vector" [B] is a 3×1 "column matrix/vector"

$$
\begin{bmatrix} A \end{bmatrix}_{2x3} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad \qquad \begin{bmatrix} B \end{bmatrix}_{3x2} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}
$$

$$
\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}
$$
 square matrix
$$
\begin{bmatrix} a_{11} & \dots & \dots \\ a_{12} & a_{22} & \dots \\ a_{23} & \dots & a_{33} \end{bmatrix}
$$
main diagonal

Transpose of a matrix:
$$
\begin{bmatrix} A_{ij} \end{bmatrix}^T = \begin{bmatrix} A \end{bmatrix}_{ji}
$$
 $\begin{bmatrix} A \end{bmatrix}^T = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ \frac{a_{13}}{a_{13}} & \frac{a_{23}}{a_{33}} & \frac{a_{33}}{a_{33}} \end{bmatrix}$

Symmetric Matrix:
$$
A = A^T
$$
, i.e. $a_{ij} = a_{ji}$ $\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 1 & 4 & -5 \\ 4 & 2 & 6 \\ -5 & 6 & 3 \end{bmatrix}$

Diagonal Matrix:
$$
a_{ij} = 0
$$
 for $i \neq j$ $\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

Identity Matrix:
$$
a_{ij} = 1
$$
 for $i = j$, $a_{ij} = 0$ for $i \neq j$ $\begin{bmatrix} I \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
\n**Null Matrix:** $a_{ij} = 0$ $\begin{bmatrix} O \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Equality $\left\lfloor A \right\rfloor = \left\lfloor B \right\rfloor$ If two matrices are of the same order (dimensions) and all of their elements are identical $a_{ij} = b_{ij}$

Matrix Operations

Addition and Subtraction: Only matrices of the same order (conformable) can be added/subtracted by operating on corresponding elements: $\left\lfloor A \right\rfloor + \left\lfloor B \right\rfloor = a_{_{ij}} + b_{_{ij}}$

$$
\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad \qquad \begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad \qquad \begin{bmatrix} A+B \end{bmatrix} = \begin{bmatrix} 2 & 2 & 4 \\ 4 & 6 & 6 \end{bmatrix}
$$

$$
\begin{bmatrix} A-B \end{bmatrix} = \begin{bmatrix} 0 & 2 & 2 \\ 4 & 4 & 6 \end{bmatrix} \qquad \begin{bmatrix} B-A \end{bmatrix} = \begin{bmatrix} 0 & -2 & -2 \\ -4 & -4 & -6 \end{bmatrix}
$$

Multiplication by a scalar: To multiply by a scalar, each element of the matrix must be multiplied by the scalar: $\left\| A \right\| = s\!\left(a_{_{ij}} \right)$

 $\begin{bmatrix} A \end{bmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix}$ L ⎣ $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix}$ ⎦ $s = 2$ $s[A] = \begin{vmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{vmatrix}$ L ⎣ $\begin{array}{|c|c|c|c|c|c|} \hline 2 & 4 & 6 \\ 0 & 10 & 12 \end{array}$ ⎦ $\overline{}$

Multiplication of matrices: This can only be carried out if the number of columns of the first matrix $[A]$ matches the number of rows in the second matrix $[B]$, where the resulting matrix $[C]$ has dimensions equal to the number of rows of the first matrix by the number of columns of the second matrix: ⎡*A*[⎣] [⎤] ⎦*mxn* [⎡]*B*[⎣] [⎤] [⎦]*nxp* ⁼ [⎡]*C*[⎣] [⎤] ⎦*mxp*

This can be carried out by algebraically summing each element of the *ith* row of [A] by the corresponding element of the j*th* row of [B]. $c_{ij} = \sum_{k=1} a_{ik}$ $\sum^n a_{ik} b_{kj}^{}$

$$
\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad \qquad \begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \qquad \qquad \begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} B \end{bmatrix}
$$

$$
\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} 1 \times 1 + 2 \times 2 + 3 \times 3 & 1 \times 4 + 2 \times 5 + 3 \times 6 & 1 \times 7 + 2 \times 8 + 3 \times 9 \end{bmatrix}
$$

$$
\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} 14 & 32 & 50 \\ 32 & 77 & 122 \end{bmatrix} \qquad \begin{array}{c} **Note: \begin{bmatrix} A \end{bmatrix} pre-multiplies \begin{bmatrix} B \end{bmatrix}; \begin{bmatrix} B \end{bmatrix} \begin{bmatrix} A \end{bmatrix} \text{ not possible!} \end{array}
$$

Even when $\left\lfloor A \right\rfloor \left\lfloor B \right\rfloor$ and $\left\lfloor B \right\rfloor \left\lfloor A \right\rfloor$ is possible, generally: $\left\lfloor A \right\rfloor \left\lfloor B \right\rfloor \neq \left\lfloor B \right\rfloor \left\lfloor A \right\rfloor$

$$
\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix} \quad \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} 11 & 5 \\ 25 & 11 \end{bmatrix} \quad \begin{bmatrix} B \end{bmatrix} \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 6 & 10 \\ 10 & 16 \end{bmatrix}
$$

It is therefore important to maintain the proper sequential order of matrices when computing matrix products.

Some common relations:

$$
[A]([B] + [C]) = [A][B] + [A][C]
$$

$$
([A][B])^T = [B]^T [A]^T
$$

$$
([A][B][C])^T = [C]^T [B]^T [A]^T
$$

Multiplication of any matrix $\lfloor A\rfloor$ by a conformable (same dimensions) $null$ $\text{matrix} \ \lfloor \textit{O} \ \rfloor$ yields a null matrix:

 $\begin{bmatrix} A \parallel O \end{bmatrix} = \begin{bmatrix} O \end{bmatrix}$ $\begin{bmatrix} A \parallel P \end{bmatrix} = \begin{bmatrix} O \end{bmatrix}$

Multiplication of any matrix $\lfloor A \rfloor$ by any conformable (same dimensions) *identity* $\text{matrix} \left[I \right]$ yields the original matrix:

 $\begin{bmatrix} A \perp I \end{bmatrix} = \begin{bmatrix} A \end{bmatrix}$ $\begin{bmatrix} I \perp A \end{bmatrix} = \begin{bmatrix} A \end{bmatrix}$

Inverse of a square matrix: The inverse is only defined for square matrices [A] as a matrix $[A]$ ⁻¹ where pre-multiplication of the original matrix by the inverse yields the identity matrix $[I]$.

$\lfloor A \rfloor$ $\begin{bmatrix} -1 \end{bmatrix}$ $\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} I \end{bmatrix}$

Thus for a system of linear equations as initially described $\left\lfloor A \underline{\parallel} x \underline{\parallel} = \underline{\parallel} B \underline{\parallel}$ The concept of an inverse is used to solve for the unknown variables:

 $\lfloor A \rfloor$ $\begin{bmatrix} -1 \end{bmatrix} [A] [x] = [A]$ $\begin{bmatrix} I \end{bmatrix} \begin{bmatrix} x \\ \end{bmatrix} = \begin{bmatrix} A \end{bmatrix}$ ⁻¹ $\begin{bmatrix} B \end{bmatrix}$ $\begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} A \end{bmatrix}$ $^{-1}$ $\left[B \right]$

In general, inverting a square matrix is computationally expensive and thus more economical solution techniques are employed for solving linear (matrix) systems of equations such as LU (lower-upper) factorization.

Orthogonality
$$
\begin{bmatrix} Q \end{bmatrix}^{-1} = \begin{bmatrix} Q \end{bmatrix}^T
$$
 $\begin{bmatrix} Q \end{bmatrix} = \begin{bmatrix} 0.8 & 0.6 & 0 \\ -0.6 & 0.8 & 0 \\ 0 & 0 & 1 \end{bmatrix}$