
STRUCTURAL ANALYSIS PRELIMINARIES 

Degrees of Freedom (DOFs) – independent joint displacements (translations and 
rotations) that are necessary to specify the deformed shape of the structure when 
subjected to an arbitrary loading. 

(Q):   How many DOFs for a 3D structure?  2D?  

Supports, boundary conditions (BCs) 

Roller Pin Fixed Hybrid 

All correct solutions to mechanics problems must satisfy three principles: 

1. Equilibrium – a structure initially at rest remains at rest when subjected to a
system of forces and couples (i.e. moments).

		 Fx∑ = Fy = Fz =Mx =My =Mz =0   (6 equations in 3D)

2. Compatibility –structural elements do not overlap, have gaps, develop kinks or
discontinuities; support conditions are satisfied.

3. Constitutive relation – stress-strain behavior, provides link between equilibrium
equations and compatibility conditions.

	σ = Eε Hooke’s law for linear, elastic material 

Statically determinate – equilibrium equations can be solved independently of 
constitutive relations to obtain reactions and member forces.  Deformations can 
then be determined by employing compatibility and constitutive relations. 

Statically indeterminate – necessary to simultaneously solve three types of 
fundamental relationships (i.e. equilibrium, compatibility, and constitutive 
relation) in order to determine the structural response.  
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Uniaxial Structures
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Matrix Displacement Method ( MDM )
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Member Level
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