August 22, 2022 Matrix Displacement Method Uniaxial Structures Part I - Formulation

STRUCTURAL ANALYSIS PRELIMINARIES

Degrees of Freedom (DOFs) – independent joint displacements (translations and rotations) that are necessary to specify the deformed shape of the structure when subjected to an arbitrary loading.

(Q): How many DOFs for a 3D structure? 2D?

Supports, boundary conditions (BCs)

All correct solutions to mechanics problems must satisfy three principles:

1. *Equilibrium* – a structure initially at rest remains at rest when subjected to a system of forces and couples (i.e. moments).

$$
\sum F_x = F_y = F_z = M_x = M_y = M_z = 0
$$
 (6 equations in 3D)

- 2. *Compatibility* –structural elements do not overlap, have gaps, develop kinks or discontinuities; support conditions are satisfied.
- 3. *Constitutive relation* stress-strain behavior, provides link between equilibrium equations and compatibility conditions.

 $\sigma = E\varepsilon$ Hooke's law for linear, elastic material

Statically determinate – equilibrium equations can be solved *independently* of constitutive relations to obtain reactions and member forces. Deformations can then be determined by employing compatibility and constitutive relations.

Statically indeterminate – necessary to *simultaneously* solve three types of fundamental relationships (i.e. equilibrium, compatibility, and constitutive relation) in order to determine the structural response.

Uniaxial Structures $E.A$ ^P ^P Equilibrium Constitutive Kinematics p 5 - σ = E ϵ ε = $\frac{\delta}{L}$ $\overline{\mathsf{L}}$ g ' L= original length $\%$ = E ϵ = E $\%$ ϵ = E ϵ E ⁼ elastic modulus A : cross - sectional area P - $\left(\frac{EA}{L}\right)$ S Spring : F: .
Ex $S =$ displacement displacement force stiffness displacement + degree of freedom (DOF) I-DOF System Bridge School and the spin of $R_1 \rightarrow R_2$
 $\frac{R_1 \rightarrow R_1}{0}$
 $\frac{R_1 \rightarrow R_2}{0}$
 $\frac{R_1 \rightarrow R_1}{0}$
 $\frac{R_1 \rightarrow R_2}{0}$
 $\frac{R_1 \rightarrow R_1}{0}$
 $\frac{R_1 \rightarrow R_$ -⇐- , R_3 ① ② ③ Wotation
Wotation Mewton 5 3rd Law !
DOF FF = member $d \cdot$ DOF $\boxed{\text{#}}$ = member ember $\left(\begin{array}{ccc} & - & \rightarrow & \rightarrow & \rightarrow \end{array}\right)$ $P = f_{\text{area}}$ (#) = $\begin{pmatrix} E A \\ \hline \overline{L} \end{pmatrix}$ d , • $\left(\frac{EA}{L}\right)_{z}$ d_η K = reactio Note $\frac{N_{\text{e}}\text{h}\cdot\text{loop}}{d \cdot \text{DoF}}$

P² force (1) = joint (EA) $d_1 \leftarrow$ P,

R · reaction
 $\frac{N_{\text{e}}\text{w}+\text{loop}}{L_2}$ (EA) d_1

(2) Equilibrium $2 + x = 0$ $P_1 - \left(\frac{EA}{L}\right)_1 d_1 - \left(\frac{EA}{L}\right)_2 d_1 = C$ $P_i = \left(\begin{array}{cc} \frac{1-\epsilon}{L} & + & \frac{1-\epsilon}{L} \\ \frac{1}{L} & \frac{1}{L} \end{array}\right) d_i$ Structural-level level $\mathsf{P}_i = \mathsf{S}_{ij} \mathsf{d}_j$ $\mathsf{S}_{ij} =$ $Sij = s1$ itfness at relationship / / \ DOF DOF ⁱ associated externally with ^a unit displacement applied load ^S is structural stiffness at DOF ^j comprised of member - level contributions

Matrix Displacement Method (MDM) 2- DOF d_{1} , P_{1} d_{2} , P_{2} *
Structural Level $R_{\rm H}$ Superposition $R_{\rm R}$ \circ \circ \circ \circ \circ = Noto : Force at DOF i $=$ Stiffness \times displacement \rightarrow d, f d ' ⁼ " 42=0 ⁼ $\left(\begin{array}{ccc} 1 & - & -a, -1.0 \\ 1 & - & -a, -1.0 \\ 1 & - & - & -a, -1.0 \\ 1 & - & - & - & -a, -a. \end{array}\right)$ + d, $S_{\rm H}$ S_{21} + $d_1 = 0$ $d_2 = 1$ $d_2 = 1.0$ \star d_2 S_{12} S_{22} Force Equilibrium $\{p\} = \{S \}$ $\{S \}$ J_{of} (2) $P_1 \left\{ \begin{array}{c} 1 \leq i \leq n \leq 1 \ 1 \leq i \leq n \end{array} \right\} \begin{array}{c} d_1 \leq d_2 \leq 1 \ 1 \leq i \leq n \end{array}$ $=\int_{1}^{2} d_{1} + \int_{12}^{2} d_{2}$ $\qquad \qquad \qquad$ $J_{\text{oint}}(3)$ Sz , ^d , ^t 522 dz $n \#$ of dofs $\{d\} = [S]^{\wedge} \{p\}$ $\left\{P\right\}$ = nx $\left[\zeta\right]$ = $n \times n$ $\{p\} = [S] \{d\}$ ymmetric , i.e. Siz "Sz $"$ $\{d\}$ = nx

Member Level [^S) is comprised of member stiffness contributions $\frac{M_1}{M_2}$ generic uniaxial g-Qi ⁼ force at Dofi peneric university)
https://www.com/define/define/define/define/define/define/define/define/define/define/define/define/define/def
respectively.com/define/define/define/define/define/define/define/define/define/define/defi u_i = displacement at DOF : = $ky =$ stiffness at DOF i $\mu_1=1.0$ u - U U2 = C \overline{g} associated w/ unit displacement $\bf v$ $\overline{}$ - * \mathcal{A}_{1} at DOF_j $+$ $\qquad \qquad$ \qquad \qquad $M_1 = 0$ $M_2 = 1$ $\frac{1}{2}$ kzz $\begin{array}{c|c|c|c|c} \hline \quad & & & \\\hline \quad & & & \\\hline \quad & & & \\\hline \end{array}$ Force equilibrium at DOF_s = knee , t k₁₂ M_z $\{g\}$ = κ $\{h\}$ $Q_2 = k_{21} u_1 + k_{22} u_2$ $\left\{\begin{array}{c} \mathbf{Q}_1 \\ \mathbf{Q}_2 \end{array}\right\} = \left\{\begin{array}{ccc} k_{11} & k_{12} \\ k_{21} & k_{22} \end{array}\right\}$ " $\begin{array}{c} k_{1z} \\ k_{2z} \end{array}$ $\begin{array}{c} \begin{array}{c} \end{array}$ $\begin{array}{c} u_{1} \\ u_{2} \end{array}$ what are the kijs ?