August 29, 2024 Matrix Displacement Method Uniaxial Structures Part IV - Fixed End Forces Non-prismatic Bar







from let BC. C = 1.0 
$$|n(i) = 0$$
  
2nd BC.  $0 = k_n L$   $|n(l-r_n) + 1.0$   
EAb  $r_n$   
solve for  $k_n = -\frac{EAb}{n} r_n$   
 $L |n(l-r_n)$   
from equilibrium  $\Sigma F_n = 0$   $k_n + k_{21} = 0$   $k_{21} = \frac{EAb}{n} r_n$   
 $L |n(l-r_n)$   
similarly column 2 of the stiffness matrix  $(M_2 = 10, M_1 = 0)$   
can be derived to obtain  
 $[k] = \frac{EAb}{n} r_n - \frac{1}{l}$  Exact stiffness matrix  
 $L |n(l-r_n) - \frac{1}{l}$  Exact stiffness matrix  
 $k_n = \frac{Ab}{Ab} - Ae$   
Approximate solutions can Closer approximations by  
the obtained by using multiple subdividing into more  
prismatic bar elements elements (h-refinement)